
J O U R N A L  O F  M A T E R I A L S  S C I E N C E  2 0  ( 1 9 8 5 )  1 6 4 5 - 1 6 5 9  

A model for the compressive buckling 
of extended chain polymers 
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A model for the compressive buckling of an extended polymer chain is presented. The 
application of classical elastic instability analysis to an idealized polymer chain reveals 
that the bending rigidity and critical buckling loads for a chain are proportional to the 
force constants for valence bond angle bending and torsion. Highly oriented polymer 
fibres are treated as a collection of elastic chains that interact laterally. The critical 
stresses to buckle this collection of chains are calculated following a procedure developed 
to predict the compressive strengths of fibre-reinforced composites. This buckling stress 
is predicted to be equal to the shear modulus of the fibres and is the limiting value of 
compressive strength. Comparison of experimental and predicted values shows that the 
theory overestimates the compressive strength, but that there is a correlation of shear 
modulus with axial compressive strength. Consideration of flaws in both the theory and 
the material indicate that the compressive strength should be proportional to either the 
shear modulus or shear strength of the fibres. 

Nomenclature 
P = axial compressive load (force)  AUz,  AU~, = strain energy changes in elastic 

Per = critical buck l ing load  (force)  AU~ foundat ion ,  where e refers to 

M, Mi = bending momen t s  extens ion mode  buckling and s 

l = length o f  a link refers to shear mode  buckl ing 

p = number  o f  links E ,  = transverse modulus  

k = elastic hinge constant  G = longitudinal  shear modulus  

~, c~ i = angular ro ta t ion  o f  hinges b = dimension associated wi th  chain 

L = overall chain or co lumn length packing 

P, Pi = lateral def lec t ion  o f  buckled chain A = cross-sectional area per chain 
or co lumn ( =  b 2) 

x , y , z  = Cartesian coordinate  axes f ( x )  = curve f i t ted  to shape o f  buckled 

E = Young 's  modulus  of  isot ropic  chain 

co lumn m, n, r = integers 

I = m o m e n t  o f  inert ia a n = coeff icients  of  t r igonometr ic  series 

aij = mat r ix  coeff ic ients  ey = normal  strain i ny -d i r ec t i on  

Ap = coeff ic ient  for exact  buckl ing loads as = normal  stress i ny -d i r ec t i on  

o f  chains ~'xy = shear strain in xy  plane 

&T = energy change due to work  o f  rxy = shear stress i n x y  plane 

external  load on buckled co lumn or Ux = displacement  in x-di rec t ion  

chain uy = displacement  i ny -d i r ec t i on  
zXU1 = bending strain energy change o f  V = volume 

buckled co lumn or chain 
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Figure 1 Compressive kink bands in Kevlar 
49 fibre. 

1. Introduction 
Structure-property relationships are highly impor- 
tant for oriented polymers. Such polymers typi- 
cally have a relatively large axial modulus and 
small transverse and shear moduli. This behaviour 
can be accounted for by strong covalent bonding 
along the chain orientation axis, and weaker sec- 
ondary bonds between chains. The directionally 
dependent bond strengths are also evident in the 
disparity between large axial tensile strengths and 
smaller transverse tensile and shear strengths. 
Furthermore, the axial compressive strengths of 
oriented polymers are typically less than 25% of 
their corresponding tensile strengths. Because 
highly oriented polymers are becoming attractive 
as structural materials, the low compressive 
strengths of these materials have become a major 
concern. The reasons for this relative weakness in 
compression are not clear. In this paper a mech- 
anism for buckling of  highly oriented polymers 
during axial compression is proposed. A model 
is introduced that allows both predictions of com- 
pressive strengths and perhaps some understanding 
of the failure process. 

2. Background 
Compression of oriented polymers along the orien- 
tation axis results in an apparent failure which 
manifests itself as kink band formation An 
example of kink banding in axially compressed 
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Kevlar fibres is shown in Fig. 1, These compres- 
sive kink bands have been observed for well- 
oriented polymers based on both rigid rod [1-6]  
and flexible [7-15] chains. Most of these poly- 
mers exhibit nearly linear elastic behaviour in com- 
pression until the onset of kink banding. This 
point usually coincides with a maximum compres- 
sive load and the initiation of inelastic deforma- 
tion. The compressive strength of these oriented 
polymers is usually defined as the stress which 
initiates the apparent yield behaviour and concom- 
mitant kink banding. These compressive character- 
istics are not unique to oriented polymers, having 
been observed for other materials exhibiting 
similar structural anisotropy such as wood [16, 
17], unidirectionally reinforced fibre composites 
[18-22], graphite fibres [23, 24] and models of 
foliated rock [25]. 

The compressive strength of fibre-reinforced 
materials has been analysed with regard to elastic 
instabilities [26-29]. These theories predict the 
compressive strength to be the critical load neces- 
sary to cause the microbuckling of a system of 
parallel and stiff fibres in an isotropic and elastic 
matrix. The most frequently cited analysis is by 
Rosen [26], who used energy methods developed 
by Timoshenko and Gere [3] to solve the problem 
of buckling of columns supported by an elastic 
foundation. The compressive strengths predicted 
by this theory are typically twice the experimental 



values for well-fabricated composites reinforced 
with isotropic fibres such as boron [31]. The dis- 
crepancy between measured and predicted values 
has been attributed to use of a two-dimensional 
instability model to predict compressive strength 
for a material which is three-dimensional. The 
predicted strengths represent upper bounds, and 
in many cases the measured compressive strengths 
of composites are much lower than half the values 
predicted by stability analysis. The reasons postu- 
lated to account for these discrepancies include 
imperfections (voids, poor fibre packing and 
alignment, poor fibre-matrix adhesion, etc.) 
and inelastic behaviour of either matrix or fibre. 
Other theories have subsequently been proposed 
to predict compressive strengths when these 
effects are included in the analysis (see, for inst- 
ance, [32, 33] for reviews of fibre composite 
compressive strength theories). A prevailing 
result in many of these theories is the propor- 
tionality of compressive strength with either long- 
itudinal shear moduli (for "failure" as predicted 
by elastic instabilities) or longitudinal shear 
strengths (for shear failure instabilities). 

Analyses of the compressive strengths of 
oriented polymers have been focused on con- 
tinuum mechanics treatments of anisotropic 
yield behaviour [11], the analysis of deforma- 
tion along preferential slip planes [4, 7, 9, 11,13, 
15], or dislocation models for kink formation 
[34]. The bulk of this work indicates that failure 
in compression results from shear deformation or 
slippage between polymer chains. However, to 
our knowledge there are no general theories based 
on molecular concepts which predict the axial 
compressive strengths of highly anisotropic 
polymers. 

The morphology of kink bands formed in 
oriented polymers is strikingly similar to that 
of kink bands observed in the axial compression 
of fibre composites. Furthermore, we have shown 
that the permanent damage sustained by Kevlar 
fibres during kink formation is minimal and that 
compressive failure appears to be the result of 
buckling of microstructural elements [5]. The 
concept of microbuckling under compression has 
been proposed for carbon fibres [23, 24], oriented 
polyethylene [10] and Kevlar fibres [1, 2, 5]. 

The similarities between fibre composites and 
oriented polymers have led us to consider the con- 
cept of failure due to microbuckling instabilities 
for extended polymer chains subjected to axial 

compression. In this work a simple mechanical 
model is used to predict the compressive buckling 
loads of a single long and stiff polymer chain. 
Analysis of this model leads to a relationship 
between the bending stiffness of an extended 
chain and the force constants for bond angle defor- 
mations. The results for a single chain are then 
applied to a collection of such chains that interact 
through lateral bonding. The load required to 
buckle this collection of oriented chains is cal- 
culated as an estimate of the compressive strength 
of highly oriented polymers. The interaction 
between chains is accounted for in much the 
same way that Rosen approached the problem of 
predicting the compressive strengths of fibre com- 
posites using the energy methods outlined by 
Timshenko and Gere. Finally, the predictive power 
of this simple and ideal model is tested against 
experimentally determined compressive strengths 
of highly oriented polymer fibres. 

3. Rigid-link-elastic hinge model for single 
extended polymer chain 

The mechanical modelling of chemical bonds 
between atoms and molecules with springs has 
been a popular concept (refer to any standard 
Physical Chemistry text). Indeed, the calculations 
of theoretical moduli of extended polymer chains 
involve treating the chain as a series of elastic 
springs connected by elastic hinges. One of the 
first calculations of axial modulus of long chain 
molecules was made by Mark [35], and since then 
has been performed by many others for several 
polymers. Force constants for the springs and 
hinges are obtained from infrared spectroscopy 
measurements of force constants for bond stretch- 
ing and bond angle bending, respectively. For 
small deflections about equilibrium positions, the 
bonding potential energy profile is assumed to be 
parabolic so that forces are proportional to deflec- 
tions. This assumption of linear springs results in 
equivalent calculated tensile and compressive 
moduli. 

Under compression, a long and stiff polymer 
chain can buckle in a manner similar to the buck- 
ling of a long slender column. Buckling of a chain 
can occur by contraction of bonds, bending of 
bond valence angles, and/or bond rotation (torsion). 
Even if these deformations were only slight devia- 
tions from equilibrium positions, the summation 
of them all along a large section of the chain could 
result in significant chain axis curvature. The force 

1647 



P - - 

r 2 i p j  

M i : k o ~  i 

p-I hinges 
p links 

P 

Figure 2 Schematic representa- 
tion of link-hinge chain. 

constants for each type of deformation provide a 
measure of the resistance of an extended chain to 
buckling and the total effect could be considered 
a "bending stiffness" of the chain. If it is possible 
to obtain a measure of  this bending stiffness, then 
the application of classical instability analysis can 
provide an estimate of the compressive load 
required to initiate chain buckling. 

As in calculations of theoretical moduli, buck- 
ling loads are calculated for static conditions by 
assuming bond lengths, bond angles, and force 
constants remain at their respective equilibrium 
values. The actual values of equilibrium bond 
lengths and angles, and the orientations of bonds 
with respect to the chain axis differ for each poly- 
mer. To take these specific geometric factors into 
consideration is beyond the scope of this paper. 
It is emphasized that consideration of these factors 
will improve the predictive power of the model, 
but to introduce the concept of elastic buckling 
instabilities in fully extended polymer chains 
under axial compression, the following simplifying 
assumptions will be applied to the model. The 
polymer chain consists of rigid links of equal 
length, 1, oriented along the chain axis. Further- 
more, the links are connected by linear elastic 
hinges of equal stiffness, k. A representation of 
the model is shown in Fig. 2. 

Covalent bonds have been replaced with rigid 
links for two reasons�9 First, tabulated values of 
force constants indicate that bond stretching 
constants are at least an order of magnitude 
greater than torsion and bending constants [36, 

37]. Therefore, most of the deformation in a 
loaded chain is primarily due to bond angle 
changes. Second, the axial deformation of a 
buckled chain is negligible compared to the 
displacement due to bending the chain. This 
assumption of "axial rigidity" is also made in 
the classical analysis of column buckling. 

The elastic hinges represent the bending of 
valence bond angles and bond rotation. If bend- 
ing deflections are small, the hinges can be con- 
sidered linear elastic. The bending moment 
developed at any hinge is then equal to the pro- 
duct of  k and the angular rotation, a, as shown 
in Fig. 2. 

To calculate critical buckling loads for the 
link-hinge chain, one approach is to perform 
a static equilibrium analysis of  the system in 
the buckled configuration and determine the 
minimum value of compressive load required 
to maintain such an equilibrium. It is assumed 
that the chain is pinned at its ends (i.e., no reac- 
tion moments) and that the compressive load 
is conservative. Additionally, at the onset of buck- 
ling the magnitude of the lateral deflections are 
assumed to be small relative to the overall chain 
length and confined to a single plane, thereby 
reducing the problem to two dimensions. 

The equations obtained from a static equili- 
brium analysis of bending moments at each hinge 
of the buckled chain form a set o fp  -- 1 linear and 
homogeneous algebraic equations for a chain with 
p links. This set of equations can be written in 
matrix form as, 
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T A B L E I Comparison of critical loads calculated from 
exact equilibrium analysis and from approximate formula 
for long link-hinge columns 

p Ap (N/p); Ap 

(~/p)~ 

2 2 2.467 0.81 
3 1 1.097 0.91 
4 0.586 0.617 0.95 
5 0.382 0.395 0.97 
6 0.268 0.274 0.98 

exact Per = Ap(kfl) 
P~e p p r O x "  = (Tr/p) 2 (k/l) 

where the angles c~ i are the rotation of  each hinge 
i and the coefficients aij are functions of  the com- 
pressive load, P, the hinge constant, k, and the 
length of  a link, l. 

The calculation o f  buckling loads is an eigen- 
value problem for this set o f  linear equations. The 
p - - 1  eigenvalues obtained from the nontrivial 
solution of  Equation 1 are the compressive loads 
which cause buckling. The minimum positive 
eigenvalue is the critical buckling load Pc~. An 
example of these calculations for a chain with 
p = 4 is given in Appendix 1. 

The calculated critical loads for any value of  p 
are all of  the form; 

where the coefficient Ap is a function of  p only. 
Values o f  Ap for p = 2 - 6  are given in Table I. 
These results show that the critical buckling load 
decreases with increasing chain length. 

In performing the calculations of  critical loads 
by moment equilibrium analysis, it becomes evi- 
dent that the computation difficulty increases 
rapidly with increasing model size. In other 
words, for a chain with p links the determinant of  
a ( p - - 1 ) x  ( p - - 1 )  matrix must be found and 
after setting this determinant equal to zero, the 
(p -- 1) roots o f  the resulting polynomial must be 
determined. So that the buckling analysis may be 
applied to polymer chains where p is very large, we 
seek to derive a single relationship between the 
critical buckling load and the values p, k, and I. 

4. Approximate buckling load formula for 
long link-hinge chains 

Intuitively, it appears that the buckled shape of  a 
long l ink-hinge chain (p large) should be similar 
to the shape o f  a buckled elastic column of  the 

(a) 

Z= v(x) -~-~. 
p . . . . . . . . . . . . .  p 

(b) 

Figure 3 Buckled shapes of an elastic column and a long 
link-hinge chain. 

same length and with the same end restraints. This 
analogy is illustrated in Fig. 3. 

The bending moments in a loaded elastic col- 
umn are related to material properties by the 
equation: 

d2v 
E I ~ x  2 = M ( x )  (3) 

The critical load for the buckling of  an elastic 
column can also be calculated using a static equi- 
librium analysis of  the buckled column. Referring 
to Fig. 3, it can be seen that the bending moment 
at any point along the column is given by: 

M = - -Pv .  (4) 

Substituting this result into Equation 3 and 
rearranging yields: 

d2v + P v  = 0. (5) 
E l  dx 2 

Solutions to this differential equation lead to dis- 
crete values of  the load, P, required to initiate 
buckling. The minimum (critical) value for a col- 
umn with pinned ends is known as the Euler 
buckling load and is given by: 

7rZEI 
P e r -  L 2 -  (6) 

The next task is to demonstrate the analogy 
between Euler buckling of  a continuous column 
and buckling of  the link-hinge chain when the 
number of  elements is large. This will be accom- 
plished by deriving a "differential equation" for 
static equilibrium of the link-hinge chain and 
comparing it to Equation 5. 

A coordinate system for the buckled configura- 
tion of  the link-hinge chain is defined as shown 
in Fig. 4a. The balance of  bending moments at any 
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Figure 4 (a) Coordinates to describe 
shape of buckled l ink-hinge chain. (b) 
Expanded view in vicinity of hinge i. 

arbitrary hinge, i, is given by: 

s  = Pvi--Mi = 0, (7) 

where vi is the lateral deflection of hinge i from 
the x-axis. The bending moment, Mi, is due to the 
rotation of hinge i from its equilibrium position. 
By inspection of an expanded view of the buckled 
link-hinge chain in the vicinity of hinge i shown 
in Fig. 4b, it is seen that the bending moment is: 

Mi = k(o~i- 1 - -  O~i). (8)  

Substitution of this result into Equation 7 yields 
the equation which governs the buckling of the 
link-hinge chain: 

k(oL i - a i -  1)+ Pv i = 0. (9) 

As the number of elements in the link-hinge 
chain is increased, the shape of the chain after 
buckling approaches a continuous curve. Using 
finite difference methods, a continuous function 
f ( x ) ,  which passes through each hinge, can be fit- 
ted to the profile of the buckled link-hinge chain. 
When the number of elements and, therefore, the 
chain length is allowed to increase without bound 
at a fixed link size, the chain configuration will 
conform exactly to the curve traced by the fitted 
function. It should be noted that the limit of 
increasing overall chain length at fixed link length 
is mathematically equivalent to the limit of vanish- 
ing link length at fixed overall chain length. Both 
cases represent the limit of an infinite number of 
elements. .= 

The details of this procedure are given in 
Appendix 2. The important result of this analysis 
is that the curvature of the buckled chain is pro- 

portional to the angular change between neigh- 
bouring hinges, i.e. 

d2p 
(O~i--O~i-1) = ldx  z. (10) 

Substituting this result into Equation 9 gives: 

k l -  d2p +Pv = 0. (11)  
dx 2 

Comparison of this equation with Equation 5 
shows that the differential equations governing 
the buckling of the link-hinge chain and continu- 
ous column are completely analogous. More 
importantly, it shows that the bending stiffness 
of the link-hinge chain is given by the product kl. 
The dimensions of this product are equivalent to 
those of the stiffness El, namely (force) (length) 2. 

By analogy, we can write down the critical 
buckling load for a long link-hinge chain as: 

7r2kl 
Per = L2" (12) 

The validity of using the approximate Equation 
12 to predict the critical buckling loads of the 
link-hinge chain can be demonstrated by compar- 
ing values of Per calculated using Equation 12 with 
the exact values calculated in Section 3 for several 
values of p. By noting that L = pl, where L is the 
overall chain length, Equation 12 can be modified 
to give: 

This allows a direct comparison between the term 

1 6 5 0  



(n/p)  2 and the coefficient Ap defined in Equation 
2. These values are given in Table I. Clearly the 
agreement is very good even for chains of only six 
links. 

The derived approximate formula. Equation 12, 
is significant in that it allows calculation of critical 
buckling loads for a polymer chain (given the 
imposed assumptions) from bond bending and tor- 
sion force constants, bond lengths, and total chain 
length. It also demonstrates that the bending stiff- 
ness of such a chain is a function of the resistance 
to bond angle deformation and the length of the 
bonds along the chain axis. 

Inspection of Equation 12 will reveal that the 
buckling loads diminish rapidly with chain length. 
This result, which neglects the effects of interchain 
interaction, predicts extremely low compressive 
strengths for polymer chains of only average mole- 
cular weight. As an example, the compressive 
strength of Kevlar fibres will be calculated using 
Equation 12. 

Because a buckled chain can only support a 
load which is less than or equal to the critical load, 
the load required to buckle a collection of non- 
interacting chains, regardless whether the chains 
buckle one at a time or all at the same instant, is 
simply the sum of the buckling loads for each 
chain. Therefore, the critical stress for buckling a 
single chain is equal to the buckling stress for any 
collection of laterally non-interacting chains. A 
stress calculated in this manner can be used as an 
estimate of the compressive strength of a fibre 
having relatively poor lateral strength and stiffness. 
Typical force constants for bond angle bending are 
k = 0 . 5 •  -1 [36]. Most covalent bond 
lengths are approximately l ~ 0.1 nm. The average 
length of a Kevlar molecule is 210nm [38] and 
the cross-sectional area per chain in the unit cell is 
0.2024nm 2 [37]. Using Equation 12, a critical 
stress of only 0.06 MPa is calculated. This estimate 
is compared to the measured compressive strength 
of 700MPa [5]. Clearly, in order to predict the 
compressive strength of a fibre formed from a col- 
lection of highly oriented and fully extended 
chains, interchain interactions must be considered. 

5. I nterchain interactions 
The lateral interactions between linear polymer 
chains in highly oriented fibres are usually second- 
ary bonding forces. For small deviations away 
from equilibrium separation, these lateral bonds 
can be adequately modelled with linear springs 

(again, refer to standard Physical Chemistry texts). 
Therefore, when a polymer chain is subjected to 
an axial compressive load, its tendency to buckle 
and deflect laterally will be opposed by forces 
which are approximately proportional to the mag- 
nitudes of the lateral displacements. 

A collection of fully extended and well- 
oriented chains, that interact as just described, can 
be treated as elastic columns supported by an 
elastic foundation. The elastic foundation can be 
considered as a "matrix" having a stiffness that is 
the sum of the interactions of all the individual 
lateral bonds: A method for determining the buck- 
ling loads for elastically supported columns using 
a strain energy approach has been developed by 
Timoshenko and Gere [30]. Their analysis was 
applied to a single column supported on only one 
side by an elastic foundation. The extension of 
this analysis to the problem of a collection of col- 
umns on a foundation has been reported by several 
investigators as a prediction of the axial compres- 
sive strength of unidirectional fibre-reinforced 
composites [26-29]. A similar analysis wilt be 
performed here, following especially the work of 
Rosen [26], in order to calculate the compressive 
buckling loads of a collection of linl~-hinge chains 
that interact laterally. These loads will be used as 
theoretical estimates of the axial compressive 
strengths of oriented polymer fibres. 

At the onset of elastic instability, the following 
energy balance holds: 

AT = AU1 + AU2 (14) 

where AT is the change in potential energy of the 
chains due to load P acting to shorten the buckled 
chains, A U1 the strain energy change of the buckled 
chains, and AU2 the strain energy change in the 
elastic foundation. To calculate a critical load, the 
buckled chains are assumed to take on shapes 
which produce energy changes that satisfy Equa- 
tion 14. The smallest load which causes buckling 
into the allowed shapes is the critical load. Any 
buckled shape can be described by a series of trigo- 
nometric functions which are all periodic over 
length L. For simplicity it is assumed that the 
buckled shape of each chain has the same wave- 
length. Therefore, the only difference between 
neighbouring chains is a phase mismatch. The two 
extreme cases considered here are when the chains 
buckle completely in or out of phase as shown in 
Fig. 5. These two configurations were called exten- 
sion and shear mode buckling by Rosen because 
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Figure 5 Buckling modes for a collection of link-hinge 
chains (after Rosen [26]). 

of the nature of deformation in the foundation. 
The details of the calculations of compressive 
strengths for these two cases are given in Appen- 
dix 3. 

With the assumption that chain packing pro- 
duces transverse isotropy (i.e. fibre symmetry), the 
results obtained for the compressive strengths due 

s buck- e, and shear mode, cre , to extension mode, oe 
ling are: 

4 (EtkI)  1/2 
e (15) 

a c -  A 

s = C ( 1 6 )  Oe 
where E t is the transverse Young's modulus, A the 
cross-sectional area per chain, and G the longitud- 
inal shear modulus. The values E t and G are the 
appropriate elastic constants of the polymer fibre. 
These quantities appear in the result because it was 
assumed that bonding between the chains can be 
modelled with a continuous foundation. Not sur- 
prisingly then, these results are similar to those 
obtained by Rosen, except for the omission of a 
"volume fraction" term which is meaningless in 
the present analysis. The predicted compressive 
strength of a uniaxiaUy oriented polymer is the 
lower value of the strengths given by Equations 15 
and 16. 

6. Discussion: calculated and measured 
compressive strengths 

It is unfortunate that data on compressive strengths 
of highly oriented polymers is scarce. However, a 

good comparison of the microbuckling theory 
with measured compressive strengths can be made 
for oriented polyethylene (PE), Kevlar, graphite 
and poly(paraphenylene benzobisthiazole) (PBT) 
fibres. The graphite fibres are included because 
they are composed of oriented ribbons and micro- 
fibrils of "polymeric" graphite [39]. The PBT 
fibre is based on a lyotropic liquid crystalline poly- 
mer and exhibits thermal and mechanical proper- 
ties similar to those of Kevlar [6]. All four of these 
fibres have been shown to develop kink bands 
under axial compression. 

To calculate compressive strengths using the 
microbuckling theory, values of bond bending and 
torsion force constants, covalent bond lengths, 
transverse moduli, longitudinal shear moduli and 
chain cross-sectional areas are required. Covalent 
bond lengths are generally close to 0.1 nm and 
bending force constants of valence angles are sur- 
prisingly similar for many types of bonds, with 
values near 0.5 x 10 -18 Jrad -1 [36]. However, for 
PE it is assumed that bending of the chain will 
occur almost exclusively by torsion away from 
the trans conformation. A force constant for this 
torsion in n-parafiins was measured to be 0.024 x 
10 -is Jrad -1 [40]. 

The elastic moduli of these materials have been 
determined. The longitudinal shear moduli were 
measured by fibre torsion [5, 6, 41], and the trans- 
verse moduli were measured by lateral compres- 
sion of the fibres [41,42]. There are no reported 
values of transverse modulus of PBT fibres, so we 
estimate a value of 0.5 GPa, which is slightly less 
than that of Kevlar. The reason for this lower esti- 
mated value is that PBT does not hydrogen bond 
laterally like Kevlar. 

Cross-sectional areas were calculated from unit 
cell dimensions [37, 43-45].  No cross-sectional 
area or bending stiffness kl can be defined for the 
graphite ribbons based on the microbuckling 
model. Therefore, there is no calculation for the 
extension mode buckling strength of graphite 
fibres presented here. However, because the shear 
mode buckling strength is equal to only the shear 
modulus, this strength can be estimated for the 
graphite fibres. It is assumed that shear mode 
buckling of graphite fibres will occur by sliding 
between graphite basal planes. The shear modulus 
for this deformation has been determined for 
dislocation-free graphite to be 4 GPa [46]. 

Measured compressive strengths of oriented PE 
are obtained from direct axial compression I14, 
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T A B L E I I Calculated and measured compressive strengths of oriented fibres 

Fibre A area per E t transverse k bending G shear 
chain (nm 2) modulus (GPa) force constant modulus 

(X 1018 J rad -1) (GPa) 

o e o .s 0 . m e a S  

(GPa) (GPa) (GPa) 

PE 0.18 0.7 0.024 0.6 
PBT* 0.22 0.5 0.5 1.3 
Kevlar 29 0.20 0.76 0.5 2.2 
Kevlar 49 0.20 0.77 0.5 1.8 
Graphite - - - 4.0 

0.9 0.6 0.04-0.05 
2.9 1.3 0.5 
3.9 2.2 0.7 
3.9 1.8 0.7 

- 4.0 2.8 

a e = 4 ( E t k l / A )  1/2 , l = 0.1 nm. 
o s z a .  

*PBT = poly (paraphenylene benzobisthiazole) 

15]. The compressive strengths of graphite fibres 
were measured using the elastica test [23]. We 
have determined the compressive strengths of  
Kevlar [5] and PBT fibres from measurements 
of  compressive strains to kink formation in both 
bending and axial compression. By assuming linear 
elastic behaviour to kink formation, compressive 
strengths could be calculated from the product of  
these compressive strains and the respective axial 
moduli of  the fibres. All of  these data are sum- 
marized in Table II. 

In comparing measured and predicted values of  
compressive strengths, it is clear that the micro- 
buckling theory overestimates the fibre strengths. 
The best estimates are the shear mode buckling 
strengths which are lower than the extension mode 
buckling strengths for all four materials. It is noted 
that for fibre-reinforced composites with fibre 
volume fractions greater than 15N, the shear mode 
buckling strength is also the lower and therefore 
the more appropriate estimate of  compressive 
strength. 

Although the measured compressive strengths 
are lower than the theoretical estimates (i.e. the 
shear moduli), the relationship between these 
quantities is evident. Considering the simplicity of  
the analysis, which disregards morphological struc- 
ture, defects and inhomogeneities, the fact that it 
predicts values within an order of magnitude of  
measured compressive strengths is indeed remark- 
able. Theoretical predictions of  material strengths 
are typically two orders of  magnitude larger than 
observed values [47]. 

Some explanations for the disparity between 
measured compressive strengths and predicted 
values will now be discussed. The single chain 
model was constructed after assuming many sim- 
plifications in the specific architecture of the chain. 
Particular values of  bending force constants, bond 
lengths and bond orientations were ignored. For- 

tunately, the analysis of  a collection of interacting 
chains showed that the strength is almost exclus- 
ively a function of  the shear modulus of  the foun- 
dation and that the bending stiffness of the chains 
can be neglected when the chains are long. There- 
fore, if another level of  structural scale was consid- 
ered, for instance long micro fibrils, the buckling 
strength of  a collection of  these fibrils would also 
be proportional to the shear modulus. However, 
studies of kink bands indicate that shear slippage 
between chains is the mechanism of deformation, 
so that the present analysis at the molecular level 
appears valid. 

The lateral bonding between chains was model- 
led as a matrix or continuous foundation having 
elastic constants equal to those measured for the 
fibre. Locally, there may be regions where the 
shear modulus is lower than the measured torsion 
modulus. Also, there may be anisotropy within the 
fibre cross-section which would favour buckling 
within the plane of lowest shear modulus. In these 
cases the microbuckling strength is determined by 
the lowest value of  shear modulus. 

Because predictions of strength are failure 
analyses (in this case due to microbuckling insta- 
bilities), regions which affect the properties of  the 
material locally can possibly lead to a premature 
failure or buckling. It has been shown that kink 
bands are nucleated in a localized area at a certain 
critical stress and then propagate at nearly con- 
stant compressive loads [19, 25]. Obviously, lower 
compressive strengths can result from local inhom- 
ogeneities. 

The presence of  voids in the fibres eliminates 
the elastic foundation on one side for those chains 
which line the void surface. Also, chains along the 
surface of  the fibre are supported on only one 
side. These chains should reach critical buckling 
loads at a stress equal to half the shear modulus. 

Residual stresses have been shown to exist in 
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graphite fibres [48]. If these stresses are large, 
regions where the fibre is in compression will 
reach critical buckling loads sooner tha'n the rest 
of the material. As with regions surrounding voids, 
these areas can become nucleation points for kink 
formation. Some evidence has been seen for the 
initiation of kink bands near the surface of graph- 
ite fibres [24], and the surface of these fibres is 
apparently under residual compression [48]. 

Misalignment of chains and microfibrils is seen 
even in high-modulus fibres [39, 49]. Under axial 
compression these sections of the fibre will experi- 
ence shear stresses that could possibly exceed the 
shear strength between chains or fibrils. In this 
case, the ultimate compressive strength cannot be 
predicted by an elastic instability analysis. The 
compressive strength for materials which fail in 
shear should be proportional to the shear strength 
rather than the shear modulus. 

Finally, as a point of clarification, it should be 
emphasized that the classical analysis of elastic 
buckling instabilities is not a true failure analysis. 
The purpose of the analysis is to predict the load 
necessary to initiate a geometrical instability for 
special structures like slender columns. When the 
critical load is removed from a buckled elastic 
column, it should return to its original unde- 
formed state. However, because large bending 
deformations occur at loads slightly greater than 
the critical loads, true material failure or plastic 
deformation may occur after buckling is initiated. 
In this manner, permanent shear deformation can 
occur after the onset of microbuckling as polymer 
chains slip past each other to form a kink band, a 
band which remains after removal of the compres- 
sive load. Therefore, the estimate of axial com- 
pressive strength for oriented polymers is the load 
which initiates buckling and subsequent kink 
formation. 

7. Conclusions 
The use of a rigid link-elastic hinge chain to model 
the axial compressive behaviour of extended poly- 
mer molecules permits the calculation of a bending 
stiffness for single chains. This bending stiffness 
is the resistance of a polymer chain to bending and 
buckling and it has been shown to be proportional 
to valence bond bending and bond torsion force 
constants. For isolated or weakly interacting 
chains such as in polymer solutions and melts, the 
model can be used to calculate single chain buck- 
ling loads. An example calculation for Kevlar gave 
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an estimated buckling stress of only 0.06 MPa. 
Flow fields which lead to compression or bending 
of the polymer chains may result in flow instabili- 
ties or even chain scission as a result of severe 
bending. 

Modelling oriented polymer fibres with a col- 
lection of interacting rigid link-elastic hinge 
chains indicates that the compressive strength 
should be equal to the longitudinal shear modulus. 
Although the actual compressive strengths are 
lower than the estimated values, the trend of 
increasing strength with increasing shear modulus 
was noted for highly oriented PE, two rigid rod 
based fibres, and graphite fibres. Several reasons 
were given for the disparity between predicted and 
measured compressive strengths, most of which are 
related to local imperfections in the fibres. All of 
the explanations point to the relationship between 
compressive strength and either longitudinal shear 
modulus or longitudinal shear strength. 

Appendix 1. Buckling of a l ink-hinge 
chain with three hinges (p = 4) 
The moment equilibrium is calculated only at 
hinges labelled 2 and 3 in Fig. 6a. The free-body 
diagrams for moment balance at these hinges are 
shown in Fig. 6b. The equations generated by 
inspection of these diagrams are: 

EM2 = P l s i n a l - - k ( o ~ t - - a 2 )  = 0 
(A1) 

Y-,M3 = Pl(sinoel + s ina2)--k(2oez)  = O. 

For small deflections, the small angle approxima- 
tion sin a ~ a can be substituted to give : 

( P l - - k ) a a  + ( k ) a 2  = 0 
(A2) 

( e l ) a a  + ( P l - - 2 k ) a 2  = O, 

or in matrix form: 

(PI) ( 1" l -  2k)] 2 

(A3) 

The critical values of P are obtained from: 

I (Pl -- k)' ( k )  0 = P2lZ - 4k ip  + 2k 2 . 

(PI) (PI -- 2k) 
(A4) 

The roots of this polynomial or eigenvalues are 
given by: (/k__) 

P = (2  - 21 /2)  . ( A S )  



(a) 3 

(b)  (c/ 
2 P 

Figure 6 (a) Buckled l ink-hinge chain (p = 4). 
(b), (c) Free-body diagrams for moment balance. 

The critical load is therefore: 

Pex(p = 4) = (2 - -  2i/2) ( k ) .  (A6) 

It should be noted that a symmetrical buckling 
pattern was assumed and therefore an equation 
for hinge 4 would be redundant. The symmetry 
of the buckling configuration can be proven by 
assuming a general shape for the buckled chain 
and determining the eigenvectors, i.e. the values 
of a t, for each eigenvalue of buckling load. 

Appendix 2. Finite difference method 
approximation for buckled shape of long 
link-hinge chains 
While a number of finite-difference methods are 
applicable, we have chosen an interpolation 
method known as the Backward Newton-Gauss 
Formula [50]. The first few terms of this formula 
are given by: 

(r + 1)r 
f ( x  t + r A x )  = f i  + r ( f t  - - f t - 1 )  + - -  

2~ 

X [ ( f t + X - - f t ) -  ( f i - - f t - 1 ) ]  + ' ' "  

(A7) 

where: f ( x )  is a function approximating buckled 
column shape, x~ the starting point for inter- 
polation, fk = f (xk ) ,  Dx the equidistant separ- 
ation of points, i.e. hinges, along x-axis, and r an 
integer constant. 

Mathematically, the links form chords which 
connect points along the curve f ( x ) .  These points 
correspond to the location of the hinges in the 
buckled chain. As the number of elements or 
points increases without bound, the chords and, 
therefore, the profile of the buckled column will 
conform exactly to curve f ( x ) .  

Referring to Fig. 4b it is easily seen that 

~ x  i = 1 cos a t. (A8) 

With small deflections, cos a t ~ 1, then: 

s ~ l (A9) 

and the equidistant separation between hinges 
becomes: 

~x  = l. (A 1 0) 

The derivatives of the function f ( x )  at the 
point x = x i are obtained by taking the derivatives 
of Equation A7 with respect to r and then setting 
r = 0. Hence: 

2 r +  1 
A x f t ( x l  AC FAX)  = ( f l  - -  f i - 1 )  "~ - -  

2~ 

• [(fi+a - - f i )  - -  ( f i  --fi-x)] 

2 
s  + rs = ~ [(ft+l - - ; t )  - - ( ; t  --21-1)1 

(A l l )  

and with r = 0: 

1 1 
f ' ( x l )  = ~ x  {(f i  - - f i - 1 )  + ~.  [(fi+l --jei) 

- -  ( f / - - f t - x ) ]  } 

1 
f " ( x t )  = Ax~--~ {(f/+, -- f l )  - -  ( f i  --f/-1)}. 

(A12) 

It can be seen in Fig. 4b that the differences in 
parentheses in Equation A 12 are given by: 

( ~ -  f t - , )  = f ( x O - f ( x t - , )  = /'vt-1 

(f i+, - -  f i )  = f ( x i + l ) - - f ( x t )  = APt 

(A13) 

Substitution of these results along with Equation 
A10 into Equation A12 yields: 
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2 
f ' ( x i )  = 27 {Aui- '  + Api} 

1 
f " (xO = ~ {a,,~ -/ , , ,~_,}.  

(A14) 

The increments Av i and Avi_ 1 can also be written 
as: 

Av  i = l sin ai 
(A15) 

APi_ 1 = l sin ai_ 1 

and for small angles these relations are reduced to: 

Av  i ,w, la i 
(A16) 

Avi_ 1 ,,~ lai_ I . 

Substitution of Equation A16 into Equation A14 
gives: 

f t ( X i )  = I { G ~ i _  1 "1- OLi} 
(A17) 

1 
Y'(x0 = T {~' - ~ - ' } '  

Rearrangement of the equation for the second 
derivative gives: 

[d2u~  
ly"(xi) = l 

[ d x  )x=xi = ( a i - a i - 1 )  

(A 18) 

cally equivalent. The foundation is assumed to 
be equally stiff in the y and z directions. This 
assumption imposes a restriction of transverse 
isotropy on the polymer. If the total effect of 
lateral bonding is summarized as a continuum 
foundation, then the foundation stiffness in the 
extension buckling mode is a function of a single 
transverse modulus, E t = Ey  = Ez ,  and the stiff- 
ness in the shear buckling mode a function of a 
single longitudinal shear modulus, G = G=s = 
Gxz. In reality each polymer chain will buckle 
in a manner that simultaneously minimizes the 
chain bending strain energy and foundation 
strain energy changes. 

Rosen postulated that any combination of the 
two buckling modes will require more energy 
and therefore higher loads than either of these 
extremes. The critical load for a material is then 
given by the lower of the two values predicted 
for extension and shear mode buckling. 

Following Timoshenko and Gere [30], the 
buckled configuration of any chain can be des- 
cribed by a single series of sine waves. The lateral 
deflection of a chain is then: 

u(x)  = Y', a n sin nrrx_ (A19) 
n L 

Appendix 3. Buckling of chains on elastic 
foundations 
The chains are assumed to pack in the cross-section 
of the fibre on a cubic lattice as shown in Fig. 7. 
The lattice dimension, b, is chosen so that the 
cross-sectional area per chain b 2 is equal to the 
value determined experimentally from the actual 
unit cell of each polymer. The elastic foundation 
is treated as a "matrix" which surrounds the 
chains and is not shown in Fig. 7. 

Buckling is assumed to be restricted to one of 
two planes, either x y  or x z ,  which are geometri- 

( chain axis ) 

z 

. 

l 
Figure 7 Packing geometry for a collection of interacting 
and perfectly oriented link-hinge chains. 

The change in work due to load P acting on a 
chain buckled into a configuration given by 
A19 is: 

Prr2 ~ n2 a2n (A20) 
A T = -4-~ n 

The change in bending strain energy due to P 
acting on a chain with bending stiffness kl  is: 

rr4 k l  V 4 2 
AU1 (A21) - 4L a @ n a n . 

The strain energy change in the foundation, 
AU2, must be calculated for each of the two 
modes of buckling. 

A3.1. Extension mode  
For buckling within a plane, the extension mode 
configuration can be depicted as shown in Fig. 8. 

The deformation of the foundation is due 
solely to normal strains given by: 

2v 
% b (A22) 

The strain energy change is: 
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i I ; 

Figure 8 Coordinates for extension mode buckling. 

1 P 
AU~ = 2 J r  ~  (123)  

and for a continuum foundation, a s = Etey,  then: 

AU~ = 2Et I u2dV. (A24) 
b 2 .Iv 

The energy change per chain is, therefore: 

2E t f L  fb,,2 fbl2 V 2dzdvdx  
AU~ - b2 Jx=OJ-b/2 J-hi2 

L 
= 2E t [  u 2dx. (A25) 

d 0 

After substitution of Equation A19: 

AU~ = EtL Za2n �9 (126)  
n 

Tile energy balance is given by substitution of 
Equations A20, A21 and A26 into Equation 14 
yielding: 

4L n 4L a ~ n 

tion A29 will dominate and large values of  m 
will be required to minimize P. For large values 
of  the integer m, it was shown [30] that: 

L [ k l ~  1/4 
= ( 1 3 0 )  L 

Substitution of this result into Equation A29 gives 
the relationship: 

p e  = 4(Etkl)I/2. (A31) 

For the packing arrangement shown in Fig. 7, the 
compressive strength estimated for extension 
mode buckling is then: 

Po e 4(Etkl)  1/2 
e _ _ (A32) 

~ A A ' 

where A = b 2 . The result is based on the assump- 
tion that the integer, m (which corresponds to 
the number of half sine waves the columns buckle 
into), is large. Rearranging Equation A30 to give: 

L (4Et) 114 
m - (133) 

7r kl ' 

shows that m will take on large values for long 
chains and for stiff foundations as mentioned 
earlier. 

A3.2. Shear mode 
The shear mode of buckling within a plane is 
represented in Fig. 9. In this case the foundation 
is only sheared, so the strain energy change is 
given by: 

AU~ = 1~ "Cx, TxydV, (134)  
2 v 

(127) 
solving for P: 

pe _ 7r2kl __~n4 aZn 4EL2 ~a2n 

L 2 Zn2" n +  '74 
(A28) 

It was shown by Timoshenko and Gere [30] 
that ratios of the summations appearing in Equa- 
tion A28 are minimized when only one arbitrary 
coefficient a n is used. Therefore: 

s '~ _  2kl 4E L ( 1 ) 
L2 (m 2 ) + - 7 -  my (A29) 

where m = 1, 2, 3 . . . . .  
The minimum value of  P depends on the 

relative values of  kl and E t. I f  the foundation is 
stiff relative to the bending stiffness of the chain 
(i.e. Et >>kl), then the second term in Equa- 

and with rxy = GTxy for a continuum foundation: 

AU~ = 7 fv (TxY)2 dV. (A35) 

 LJl 
Figure 9 Coordinates for shear mode buckling. 

1657 



The shear strain is def ined by: 

buy bUx (A36) 
7xx = ~ -x  4 3 y '  

where uy and Ux are the displacements in the y-  

and x-direct ions,  respectively. The displacements  

uy are the lateral def lect ions o f  the buckled 

chain. Since these def lect ions are independent  

of  the y-d i rec t ion  and since there are no displace- 

ments,  Ux, Equat ion  A36  reduces to: 

_ duy dv (A37) vx, - G : G  

Subst i tu t ion  into Equat ion  A34 gives: 

G f L  fb/2 f b/2 __dr 2 
AU~ = ~ dx=O.-b/2d-b/2 d x  d z d y d x  

Gb 2 r L dv 2 
- 2 J o  ~xx dx.  (A38)  

Subst i tu t ion  of  Equat ion  A19  into Equa t ion  A38  

results in: 
7(Z b2 

AU~. G ~_ 2 2 (A39) 
- -  n a n . 

4L n 

Balancing the energies o f  Equat ions  A21 and A39  

with  Equat ion  A20  and minimizing the ratios of  

the summations as before,  leaves: 

ps  _ rr~ kl 
r 2  (rn 2) + Gb 2 (A40)  

where m is the integer number  of  half  waves o f  the 

buckled column.  The critical buckling load is 

simply: 
7( 2 kl 

PS r = L2 + Gb 2. (A41) 

Note  that  the first term in Equat ion  A41 is the 

buckling load o f  an unsuppor ted  l i n k - h i n g e  chain, 

a result derived in Sect ion 4. The addit ional  load 

required to overcome the suppor t  given by the 

founda t ion  is propor t iona l  to the shear stiffness 

o f  the foundat ion .  Because the min imum load 

occurs for m = 1, the co lumn will buckle in 

exact ly  the same pat tern  as an unsuppor ted  chain; 

a half  sine wave. 

Fo r  long po lymer  chains, the first term in 

Equa t ion  A41 can be neglected and the critical 

load is then:  
Pe% = a b 2 ,  (A42) 

and the corresponding predicted compressive 

strength is: 
OSer = G. (A43)  
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